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Motivated by the need for three-dimensional methods for interface calculations
that can deal with topology changes, we describe a numerical scheme, built from
a volume-of-fluid interface tracking technique that uses a piecewise-linear inter-
face calculation in each cell. Momentum balance is computed using explicit finite
volume/finite differences on a regular cubic grid. Surface tension is implemented by
the continuous surface stress or continuous surface force method. Examples and ver-
ifications of the method are given by comparing simulations to analytical results and
experiments, for sedimenting droplet arrays and capillary waves at finite Reynolds
number. In the case of a pinching pendant drop, both three-dimensional and axisym-
metric simulations are compared to experiments. Agreement is found both before
and after the reconnections.c© 1999 Academic Press
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1. INTRODUCTION

This article is devoted to the description and assessment of a numerical procedure for the
simulation of flows with interfaces between viscous Newtonian fluids. The interfaces are
modeled as discontinuities with constant surface tension. This physical model is relevant for
many applications. Of particular interest to us are phenomena such as droplet formation and
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breakup where interface topology may change through the reconnection of the interface.
The method may also be useful to study complex multiphase flows when, for instance, the
fluid particles undergo three-dimensional perturbations.

Numerous methods have been proposed, and are in use, for the simulation of such flows.
Here we present a method based on a simplified treatment of the momentum equation,
with a fixed, regular, uniform grid, and a volume-of-fluid (VOF) tracking of the interface.
More precisely we have implemented the so-called “piecewise linear interface calculation”
(PLIC), with Lagrangian advection of the interface pieces. The treatment of surface tension
consists of artificially smoothing the discontinuity present at the interface, in a “continuous
surface stress” (CSS) or “continuous surface force” (CSF) manner. This combination of
techniques allows us to perform three-dimensional calculations, including interface recon-
nection and breakup. The emphasis of this paper is on the three-dimensional aspects of the
numerical method and of its validation.

From a general point of view, two broad strategies exist to deal with interface calculations.
One is to use deformable meshes based on a finite volume or finite element representation.
The other strategy is to keep the mesh fixed and to use a separate procedure to describe the
position of the interface. These methods are reviewed in [1–4]. Each strategy has its own
advantages. Physical problems which interest us require a three-dimensional calculation,
with surface tension and vorticity, eventually leading to non-catastrophic reconnection of
the interface. From this perspective, the main advantage we see in fixed uniform grids is
the great simplicity they afford in the treatment of the bulk fluid regions, away from the
interfaces. A further advantage of fixed-grid methods is that they avoid the three-dimensional
remeshing that may be necessary whenever interface motion deforms the grid exceedingly.

The interface itself may be represented on a fixed grid in a variety of ways. Explicit
interface tracking may be performed by volume or interfacial marker particles [5, 6]. These
methods may be contrasted with others that describe the interface implicitly. For example,
in the VOF method, the data structure that represents the interface is the fractionC of each
cell that is filled with a reference phase, say phase 1. The scalar fieldC is often referred
to as the color function. We have 0<C< 1 in cells cut by the interface andC= 0 or 1
away from it. The dataC are given at the beginning of a computational cycle but no ap-
proximation of the interface position is known. The method is implicit since one needs to
“invert” the dataC to find the approximate interface position. In other words, an algorithm
for interface reconstruction is needed. Typically, one can reconstruct the interface by the
straightforward SLIC method [7] or by various PLIC methods. The latter methods give
much better results than the former, as noted, for instance, in the review by Kothe and Rider
[8]. The VOF method is one of the most popular schemes for tracking interfaces [5, 7, 9–14].
Recent developments and improvements of VOF surface tracking methods are reviewed in
[15–17]. It is analogous in spirit to level-set methods that represent front tracking informa-
tion on Eulerian grids [4, 18]. An advantage of both VOF and level-set methods is their
simplicity: no redistribution of the surface markers is necessary when they are stretched by
the flow, and no special provision is necessary to perform reconnection of the interfaces. Ac-
tually, it must be noted that this may be a disadvantage if one wishes to prevent reconnection
from occurring. In the physical situations that concern us, however, such as the pinching
of a fluid thread, reconnection occurs at an instant well determined by the large-scale so-
lution. In other words, the uncontrolled reconnection that one gets with volume-of-fluid or
level-set methods is appropriate for the thread-pinching problem, as we shall demonstrate
with a numerical example below.
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In our numerical scheme we employ the VOF/PLIC method. We wish to preserve the
simplicity of reconnection in implicit methods, and we trade the relative complexity of
three-dimensional reconstructions (see below) with a description of the interface which is
more localized.

Some parts of our procedure have already been presented in [14]. The two-dimensional
description of our PLIC method was given in [19]. Here we give a full redefinition of our
method, including the three-dimensional aspects of PLIC. We also perform new validation
tests of the method, in particular of its ability to describe reconnection.

In Section 2 we summarize the governing equations. In Section 3 we describe our three-
dimensional PLIC algorithm. Then we present the treatment of the momentum–balance
(Navier–Stokes) equations and review the CSS method. Finally, in Section 4 we present
various calculations, which are compared to analytical or experimental results: an infinite
periodic array of liquid droplets falling in another fluid at low Reynolds and capillary
numbers, and the simulations of a pinching pendant drop and of rising bubbles.

2. MODEL

We letu be the velocity field,ρ the density,p the pressure,µ the viscosity,σ the surface
tension,n the unit normal to the interface,κ the local curvature of the interface, andδS a
Dirac distribution concentrated on the interfaceS. The Navier–Stokes equation then reads

∂t (ρu)+∇ · (ρu⊗ u) = −∇ p+∇ · (2µD)+ σκδSn+ ρg, (1)

whereD is the rate-of-strain tensor with components

Di j = 1

2

(
∂u j

∂xi
+ ∂ui

∂xj

)
. (2)

Viscosity and density are constant in each phase but may vary from phase to phase, taking
valuesµi , ρi in phasei . These equations may be viewed as a “one-fluid formulation” as
they are expressed at any positionx. On the interface they are singular and the requirement
of cancellation of the highest order singularities leads to the classical jump conditions for
the various fieldsu, p, ρ. We consider incompressible fluids, with

∇ · u = 0. (3)

The interfaceSfollows the fluid motion. The velocity of the interface in the normal direction
n is defined by

VS = u · n. (4)

Another useful formulation is the following. Ifχ is a characteristic function with value 1
in phase 1 and 0 in phase 2, then

∂tχ + u · ∇χ = 0. (5)

The color functionC in the VOF method may be viewed as a discretization of the charac-
teristic function, although the application of standard algorithms for hyperbolic equations
to (5) does not always give the best results [5]. A more explicit account needs to be taken
of the special nature of the problem, which is entirely concentrated on the interfaceS.
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3. METHOD

3.1. Interface Tracking

In the PLIC, at each time step, given the volume fraction of one of the two fluids in each
computational cell and an estimate of the normal vector to the interface, a planar surface
is constructed within the cell having the same normal and dividing the cell into two parts,
each of which contains the proper volume of one of the two fluids. This planar interface
is then propagated by the flow, and the resulting volume, mass, and momentum fluxes of
each fluid into neighboring cells are determined. The updated values of the volume fraction
field, as well as the mass and momentum fields, are found throughout the domain, and the
numerical simulation can proceed to the next time step. The next three subsections describe
the procedure for estimating the normal vector, the construction of the planar surface in
each cell, and the propagation of the interface by the flow.

3.1.1. Normal estimation.The reconstruction is based on the idea that a normal vector
m together with the fractional volumeC determines a unique planar interface cutting the
cell. In the first part of the reconstruction a normal direction to the interface is estimated by
a finite-difference formula:

mh = ∇hC. (6)

We denote this vector bym to distinguish it from theunit normal vectorn. At first, a cell-
corner value of the normal vectorm is computed. A two-dimensional example is easy to
describe. We first define a normal vectorm at i + 1/2, j + 1/2 by

mx,i+1/2, j+1/2 = 1

2h
(Ci+1, j − Ci, j + Ci+1, j+1− Ci, j+1) (7)

my,i+1/2, j+1/2 = 1

2h
(Ci, j+1− Ci, j + Ci+1, j+1− Ci+1, j ). (8)

The required cell-centered values are computed from the cell-corner values by averaging:

mi j = 1

4
(mi+1/2, j−1/2+mi−1/2, j−1/2+mi+1/2, j+1/2+mi−1/2, j+1/2). (9)

In two dimensions,∇h is a nine-point finite difference approximation of the gradient. This
method is only first order accurate as shown in Table 1, where for completeness we present
also the results from our implementation of a second-order least square algorithm for the
normal estimation, as described in [15, 16]. The case study is an ellipse defined inside a
unity square with major semi-axisa∼ 0.3464 and minor semi-axisb∼ 0.1414. We think
this is a good test case, since the curvature is continuously changing and the ratio between
the maximum and minimum radius of curvature is about 14.697. To remove fluctuations
we average the results over several cases obtained by determining randomly the center of
the ellipse and the angle between the major semi-axis and the horizontal coordinate line.
The results are presented for grid sizes ranging from 10 to 320 points in each coordinate
direction. The error is defined as theL1 norm of the difference between the real curve and
the linear reconstruction. It is clear that the asymptotic behavior of the scheme presented
here is first-order accurate, while the least square method is second order. However, we
notice that at low to medium resolution the error of the two algorithms is comparable. The
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TABLE 1

L1 Ellipse Reconstruction Errors and Order of Convergence Using the

Average Normal Estimation (Second and Third Columns) and the Least

Square Method (Last Two Columns)

Grid points Error Order Error Order

102 3.86× 10−3 4.78× 10−3

2.31 2.43
202 7.78× 10−4 8.86× 10−4

1.81 2.38
402 2.21× 10−4 1.79× 10−4

1.40 2.13
802 8.40× 10−5 4.10× 10−5

1.15 2.04
1602 3.78× 10−5 1.00× 10−5

1.06 2.00
3202 1.81× 10−5 2.49× 10−6

results presented in this paper, in particular the three-dimensional ones, are in this range of
resolution, also considering that the interface is usually more convoluted than this ellipse.

3.1.2. Connecting fractional volume and interface position.In the second part of the
reconstruction, a planar interface which divides the computational cell into two parts con-
taining the proper volume of each fluid must be found. In general, the “forward” problem of
finding the volume within a cube on each side of a given planar interface is more straight-
forward than the “inverse” problem of obtaining the equation for the planar interface, given
the fraction of volume contained on each side and the normal direction. Both are needed
in the reconstruction and propagation steps of PLIC. We achieve this by deriving an ex-
plicit expression which relates the “cut” volume to a parameterα which completely defines
the planar surface. In order to provide a comprehensible description of this calculation in
three dimensions, we begin with its two-dimensional counterpart which has been previously
given in [19], but which we present here in a form which is easier to generalize to three
dimensions.

In two dimensions, the problem can be stated as follows. Given a rectangular (or square)
cell of sidesc1 andc2 in the (x1, x2) plane, depicted in Fig. 1, and a straight line (such
asEH) with normal vectorm, find the area of the region below the line which also lies
within the rectangular cell. This corresponds to the areaABFGD in Fig. 1. To obtain an
expression for this area, let us suppose that the componentsm1 andm2 of the normal are
both positive—this can always be arranged by a simple coordinate transformation in which
distances are measured from one particular corner of the cell, depending on the signs of
the original normal; in case one of the components vanishes, the calculation of the area
becomes trivial.

The most general equation for a straight line in the(x1, x2) plane with normalm is

m1x1+m2x2 = α, (10)

in whichα is a parameter which is related to the smallest distance between the line and the
origin. (If m is aunit normal,α is that distance.) The points at which the line intersects with
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FIG. 1. The “cut area” refers to the region within the rectangleABCDwhich also lies below the straight line
EH, having normalm and parameterα.

thex1 andx2 axes are respectively atα/m1 andα/m2. These are pointsE andH in Fig. 1.
The area of the region contained below this line within the rectangleABCD is given by

Area= α2

2m1m2

[
1− H(α −m1c1)

(
α −m1c1

α

)2

− H(α −m2c2)

(
α −m2c2

α

)2
]
. (11)

The prefactorα2/2m1m2 on the right-hand side of this equation is simply the area of the
triangleAEH. In case pointsE and H lie within the original rectangle, this is the desired
area. If pointE is to the right of pointB, i.e., if α >m1c1, we must subtract the area of the
small triangleBEF to obtain the proper area. Since triangleBEF is geometrically similar
to triangleAEH, the ratio of their areas is equal to the square of the ratio of the sidesBE to
AE, given by

Area ofBEF

Area ofAEH
=
(
α/m1− c1

α/m1

)2

=
(
α −m1c1

α

)2

.

This corresponds to the second term within the square brackets on the right-hand side of
(11), which also contains the Heaviside step functionH(α−m1c1), defined such that

H(x) =
{

0 for x< 0
1 for x> 0

since the area of the triangleBEF is only subtracted ifE is to the right ofB. Similarly, the
third term within the square brackets in (11) subtracts the area of the triangleDGHprovided
that pointH lies above pointD, i.e., if α >m2c2. The single formula (11) thus provides
the area of the region below the straight line (10) which lies in the original rectangle of
sidesc1 andc2 for all possible cases. The area is a continuous, one-to-one, monotonically
increasing function ofα. It ranges from zero, whenα= 0, to c1c2, whenα reaches its
maximum value ofm1c1+m2c2. There are two critical values ofα, corresponding to the
zeros of the arguments of the Heaviside step functions in (11), at which the function changes
form. This occurs when the straight line (10) passes through the cornersB and D of the
rectangle, i.e., whenα=m1c1 or α=m2c2.
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FIG. 2. The “cut volume” refers to the region contained within the right parallalepipedABCDEFGHand also
below the planar surfaceIJK, which has normalm and parameterα.

This result can be generalized to three dimensions with little conceptual difficulty. For this
purpose, consider the schematic drawing in Fig. 2 of the right parallelepipedABCDEFGH
of sidesAH = c1,AB = c2, andAD = c3, which is intersected by the planar surfaceIJK.
If the normal to this surface is denoted bym, all points which lie on it satisfy the equation

m1x1+m2x2+m3x3 = α, (12)

in which, as before, we take the components,m1,m2, andm3 of the normal to be posi-
tive. We also have thatAI =α/m1,AJ =α/m2, andAK =α/m3. To find the volume of
the region below this interface contained in the original parallelepiped, i.e., the volume
ABGHLMNK, we begin with the volume of the large tetrahedronAIJK, which is given
by

α3

6m1m2m3
,

and subtract the volumes of the tetrahedra which protrude outside of the original par-
allelepiped. In Fig. 2, these correspond to the volumesHIPL andBOJN. Each of these
tetrahedra is geometrically similar to the original one, and the ratio of their volumes to that
of AIJK is given, respectively, by(1−m1c1/α)

3 and(1−m2c2/α)
3. However, since the

volume of the small tetrahedronGOPM would then be subtracted twice, we would have
to add that volume to the resulting expression, provided that the lineIJ lies outside the
rectangleABGHin the first place, that is, provided thatα > (m1c1+m2c2). The ratio of the
volume of the small tetrahedronGOPMto that of the large tetrahedronAIJK is found, using
geometric similarity, to be(1−m1c1/α−m2c2/α)

3. Upon combining these results and
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accounting for the fact that pointK may also at times move above pointD, the expression
for the volume of interest turns out to be

Volume= 1

6m1m2m3

[
α3−

3∑
j=1

H(α −mj cj )(α −mj cj )
3

+
3∑

j=1

H(α − αmax+mj cj )(α − αmax+mj cj )
3

]
, (13)

in which

αmax= m1c1+m2c2+m3c3.

In (13) the second term within square brackets achieves the subtraction of the volumes of
the tetrahedra which protrude from the faces of the original right parallelepiped, in case
pointsI , J, andK move beyond pointsH, B, andD, respectively. The third term adds back
the volumes of the small tetrahedra likeGOPM, in case the linesIJ, JK, andKI lie outside
the rectangular facesABGH, ABCD, andADEH, respectively.

Equation (13) provides a continuous, one-to-one, monotonically increasing, functional
relation between the volume inside a right parallelepiped lying below the planar interface
(12) and the parameterα which fully characterizes the plane.

In practice, not only does one need the “forward” relation (13) between the cut volume
and the parameterα, but the method also requires the “inverse” problem of determining the
α which corresponds to a given cut volume and normal direction in a computational cell.
There are a number of ways to achieve this. One can simply use a standard root-finding
approach, such as bisection or Newton’s method (note that the derivative of the right-hand
side of (13) with respect toα can be calculated readily) to find the particular value ofα at
which the cut volume has the desired value. Another iterative method for determiningα is
presented in [16]. Another option, which is the one we have actually implemented, is as
follows: Corresponding to each critical value ofα for which the interface passes through
one of the corners of the cube, there exists a critical value of the cut volume. Between any
two critical values, the function (13) is a cubic polynomial inα whose roots can be eva-
luated analytically. Thus, to resolve the inverse problem, given the desired cut volume, we
first identify which two critical values bound it on either side and then obtain the root of
the correct cubic polynomial inα in that range.

In this instance, in order to simplify the search for the critical bounds, it is better to num-
ber the coordinates such that the order in which the various corners are crossed is (almost)
predetermined. On a unit cube with all sides equal to unity, for instance, we can number the
coordinates so that 0<m1<m2<m3. In this case, the order in which the corners of the
cube are crossed asα increases depends only upon whetherm1+m2 is smaller or larger
thanm3. Figures 3 and 4 represent the six critical shapes of the cut cube in each of the two
possible cases.

3.1.3. Lagrangian propagation of the interface segments.Once the interface has been
reconstructed, its motion by the underlying flow field must be modeled by a suitable advec-
tion algorithm. This can be achieved by either an Eulerian or a Lagrangian scheme. In the
Eulerian method one computes the fluxes ofχ across the faces of the control volumeVi jk .
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FIG. 3. The different critical shapes of the cut cube form1+m2<m3. The cut cube changes shape each time
the plane crosses a vertex. Each shape corresponds to a specific critical volume and a corresponding criticalα.
Between each critical pair, the cut volume is a cubic polynomial inα.

The characteristic functionχ is conserved in incompressible flow and the flux during time
τ across a faceF of Vi jk is

8F =
∫

F

∫ tn+τ

tn

χu · n′ d F dt, (14)

wheren′ is the unit normal vector to the face. This expression may be estimated once the
area of faceF which is “wetted” by phase 1 is found from the reconstruction algorithm

FIG. 4. The different shapes of the cut cube form1+m2>m3. The cut cube changes shape each time the
plane crosses a vertex. The cubic equation relating the cut volume andα depends on the placement of the plane
between the six critical positions depicted here.
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of Section 3.1.2. The explicit evaluation of the time integral forms the basis of Eulerian
methods. In our calculations, we instead use a Lagrangian method [10, 19]; that is, we
compute directly the motion of the interface segments. We have found the latter scheme to
be more robust.

The Lagrangian approach to the propagation of the interface can be best described by
considering the way in which the given planar surface (12) is propagated by the flow. For
this purpose, rewrite Eq. (12) with superscripts (n) attached to all the variables,

m(n)
1 x(n)1 +m(n)

2 x(n)2 +m(n)
3 x(n)3 = α(n), (15)

and think of this as the equation for the planar interface in the given cell at the initial time
tn. Lagrangian advection of this interface by the flow as time increases totn+1= tn+ τ will
modify it to a new form which must be calculated. Since, in practice, the time stepping is
performed separately in each spatial direction through operator splitting, we only need to
describe the advection of the interface along one spatial coordinate, sayx1.

To make the description simpler, let us suppose that the left face of the cell has coordinate
x1= 0, and the right facex1= h= c1. Also, denote thex1 components of the velocity on
the faces byUo andUh. These are taken to be constant over the entire face to which they are
assigned. Thex1 component of the velocity, within the cell, is a simple linear interpolation
of the form

u1(x1) = Uo

(
1− x1

h

)
+Uh

x1

h
. (16)

For each point initially atx(n)1 , the above velocity is calculated and assumed to remain
constant in time during the advection step. Then thex1 coordinate of each point initially on
the surface (15) changes to the new value:

x(∗)1 = x(n)1 + u1
(
x(n)1

)
τ =

[
1+

(
Uh −Uo

h

)
τ

]
x(n)1 +Uoτ. (17)

Thex2 andx3 coordinates remain constant during advection alongx1. The superscript (∗) is
used rather than(n+ 1) to denote a fractional step, to be followed by similar steps inx2 and
x3 directions before the advection to timetn+1 is completed. In order to find the equation for
the planar surface after this advection step, we look for an expression ofx(n)1 as a function
of x(∗)1 and substitute the result into (15). Specifically, from (17) we have that

x(n)1 =
x(∗)1 −Uoτ

1+ ((Uh −Uo)/h)τ
. (18)

Upon substituting this result into (15) we find the equation for the plane after advection,

m(n)
1

[
x(∗)1 −Uoτ

1+ ((Uh −Uo)/h)τ

]
+m(n)

2 x(n)2 +m(n)
3 x(n)3 = α(n), (19)

which can be written in the more standard form

m(∗)
1 x(∗)1 +m(∗)

2 x(∗)2 +m(∗)
3 x(∗)3 = α(∗), (20)
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in which

m(∗)
1 =

m(n)
1

1+ ((Uh −Uo)/h)τ
, (21)

α(∗) = α(n) + m(n)
1 Uoτ

1+ ((Uh −Uo)/h)τ
, (22)

while all other variables with superscript (∗) in (20) are equal to their old values.
After advection, one has to check whether the interface has protruded at all into the

neighboring cells to the right and to the left, and if so, to calculate the volumes moved
into those cells. Thus, for instance, ifα(∗)/m(∗)

1 is larger thanh, a portion of the volume
originally contained below (15) has moved to the right cell. We can calculate this volume
using the general formula (13), provided that we rewrite the equation for the interface in an
appropriate form by making one additional coordinate transformation in (20). Let

x(∗)1 = h+ x′1 (23)

so thatx′1 measures distances from the left facex1= h of the right cell. With this substitution,
Eq. (20) becomes

m(∗)
1 x′1+m(∗)

2 x(∗)2 +m(∗)
3 x(∗)3 = α′, (24)

where

α′ = α(∗) −m(∗)
1 h. (25)

Using the coefficients of Eq. (24), formula (13) can now be used to calculate the volume of
phase 1 fluid which was moved to the right neighboring cell. Similarly, ifUo is negative,
the volume moving to the left neighboring cell can be calculated. Finally, the volume which
remains in the original cell is calculated, using Eq. (20) and formula (13), provided that
account is taken of the change in the size of the parallalelepiped which results ifUo is
positive and/orUh is negative. In particular, ifUo is positive, the left face moves in by an
amountUoτ during time intervalτ , and to calculate the volume remaining in the cell, it is
necessary to make a coordinate transformation similar to (23) which puts the origin on this
new left face.

To illustrate the method we sketch the procedure for a two-dimensional system in Fig. 5.
The shaded region there represents the volume lost by the original cell and gained by the
downwind cell. Formula (11), applied to parallelepipedAEFB, can be used to calculate the
volume of the shaded region. With this procedure the volume fraction field is updated at
time tn+1.

This Lagrangian method is stable and satisfies the physical constraint on the volume
fraction 0≤C≤ 1 when the CFL condition, (max|u|)τ/h< 1/2, is satisfied. The program-
ming of the Lagrangian method is considerably simplified by the fractional-step strategy
described above.

We have validated this three-dimensional VOF/PLIC method with some purely kinematic
problems, where we have moved an interface of spherical shape in a translational or a
rotational velocity field and obtained good results: no deformation of the sphere is observed
for displacements of the order of the box sizeL. For reasons of space, we will not present
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FIG. 5. A schematic illustration of the Lagrangian propagation of the interface in two dimensions. During
the partial advection step, the velocityU(x) is taken to have only a horizontal component and not to depend on the
vertical coordinatey. The cellABCD is assumed to be upwind of the cellAGHB. The segmentab is advected to
cd. The flow also carriesAB to EF. The volume gained by the downwind cell is the shaded area.

these calculations here. The capabilities of our method for tracking interfaces accurately
and for treating interface reconnections and breakups will be demonstrated in Section 4.
Some aspects of the implementation of this algorithm on vector and parallel machines are
given in Section 3.3, while more details are given in the Appendix.

3.2. Discretization of Momentum Balance and Surface Tension

This part of the algorithm bears only little difference from the algorithm presented in
[14] so we will describe it quickly.

3.2.1. Reformulation of the Navier–Stokes equation.Equation (1) may be written as

∂tu = − 1

ρ
∇ p+ Li (χ, u)+ Lv(χ, u)+ Ls(χ)+ g, (26)

where the inertial term is

Li (χ, u) = −∇ · (u⊗ u), (27)

the viscous term is

Lv(χ, u) = 1

ρ
∇ · (2µD), (28)

and the capillary term may be rewritten in the form

Ls(χ) = 1

ρ
∇ · [(1− n⊗ n)σδS]

= 1

ρ
∇ ·
[(
|∇χ |1− ∇χ ⊗∇χ|∇χ |

)
σ

]
. (29)

(Recall thatχ is the phase characteristic function). Several remarks about the above for-
mulation are useful. First, as our notation implies, the viscous term depends implicitly on
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χ through the definitions

ρ = ρ1χ + ρ2(1− χ)
(30)

µ = µ1χ + µ2(1− χ).

Second, expression (29) is equivalent to the form of the surface-tension force in Eq. (1)
whenever the surface tensionσ is constant. Whenσ varies, Eq. (29) remains correct, while
Eq. (1) needs to be supplemented with a tangential stress term [2].

3.2.2. Time marching.We note with a superscript(n) the velocity fields at timetn; the
time step is thenτ = tn+1− tn. The VOF/PLIC method may be symbolized as

C(n+1) = L(C(n), u(n), τ
)
, (31)

where the operatorL expresses the action of the algorithm described in Section 3.1. For
the time marching of the velocity field, we first compute a provisional fieldu(∗,∗). We use
the already computedC(n+1) field instead ofC(n) to improve stability. For simplicity of
programming we use two steps,

u(∗) = u(n) + τ Lv
(
C(n+1), u(n)

)+ τ Ls
(
C(n+1)

)+ τg (32)

u(∗,∗) = u(∗) + τ Li
(
u(∗)
); (33)

then we project it on the space of incompressible velocity fields. Pressure is the solution of
the following Poisson problem with homogeneous Neumann boundary conditions,

∇ ·
(

1

ρ
∇ p

)
= 1

τ
∇ · u(∗,∗) in Ä,

(34)
n · ∇ p = −ρ

τ

(
u(n+1) − u(∗,∗)

) · n = 0 on∂Ä,

wheren is the normal to∂Ä. The new velocity field at time steptn+1 is given by

u(n+1) = u(∗,∗) − τ
ρ
∇ p. (35)

If p is a solution of (34), the velocity fieldu(n+1) verifies the incompressibility equation

∇ · u(n+1) = 0. (36)

3.2.3. Discretization of spatial derivatives.In all expressions of the previous section,
the continuous derivatives are replaced by central differences on the MAC-staggered grid
[14, 20]. The expressions for these central differences are well known and we consequently
omit them here. Using an explicit-in-time, centered-in-space finite-difference scheme in-
troduces classical limitations on the time step and on the mesh Reynolds number which are
addressed, for instance, in [20]. The resulting discretization may also be considered to be
the result of a finite volume formulation, since we write the equations for momentum in a
conservative form whenρ1= ρ2. The finite volumes for the horizontal velocityux,i−1/2, j,k,
for instance, are shifted by a half-grid spacing with respect to the control volumes for volume
fractionCi jk . In some cases, however, the estimation of the density and viscosity requires



436 GUEYFFIER ET AL.

some clarification. In the method reported here, we computeµ andρ at each node through
a simple volume average over the cell:

ρi jk = ρ1Ci jk + ρ2(1− Ci jk ), (37)

µi jk = µ1Ci jk + µ2(1− Ci jk ). (38)

This is the discretization of (30). The discretization of the term

1

ρ
∇ p (39)

in Eqs. (34) and (35) is an especially important issue, since this term may be singular for
two reasons, first because the pressurep jumps across the interface (as a consequence, for
instance, of Laplace’s law) and second becauseρ also jumps. Away from cell centers, three
choices are possible: (i) the simplest one is an average of the values at neighboring cells,
as in

ρi+1/2, j,k = 1

2
(ρi, j,k + ρi+1, j,k); (40)

(ii) alternatively, we may choose to reconstruct the interface in a shifted cellVi+1/2, j,k

centered onxi+1/2, j,k. This reconstruction would use the segments already constructed by
the PLIC method for cellsVi jk andVi+1, j,k; (iii) yet another option is to smooth the jump
of ρ in the same way that the jump ofχ is smoothed for the computation of surface tension
(as indicated in [14, 21] and in Section 3.2.4).

A sharp interface (option (ii)) is more accurate and somewhat prevents the diffusion
of density and momentum. However, there are two facts that temper this advantage: we
sometimes get a slower convergence of the multigrid method that we use to invert Eq. (34),
and we still do not obtain second-order spatial accuracy for the solution of the pressure field.
(Second-order accuracy means that the error made in the computation of pressure forces
isO(h2). Here it is of orderO(h1p), where1p is the pressure jump across the interface
[22].) While we have at times used option (ii) for pressure calculations in two dimensions,
we use option (i) in three dimensions and for all the off-center values of viscosity. In several
instances, it is likely that option (iii) is required to smooth the discontinuity occurring at
the interface for the term (39). The need for such a smoothing is strongly advocated, for
instance, in [6].

3.2.4. Discretization of the surface tension.The approximation of the surface tension
term Ls poses several interesting problems. Our method described in [14] amounts to a
discretization of expression (29) in which the characteristic functionχ is replaced by the
volume fractionC. As in the case of density and viscosity jumps, we have more than one
option: (i) the volume fractionC itself which varies over one or two cells may be used or
(ii) a smoothed color functioñC may be used in the estimation ofLs.

In this second case the method amounts to a variation of the CSF method of [21]. Since it
is based on a tensorial (stress) formulation, we propose to call it a continuous surface stress
method. Its main advantage is that it conserves momentum exactly whenρ1= ρ2.

The tensorial expression (29) does not project to a momentum-conserving expression in
the radial direction in axisymmetric polar coordinates. Thus in the axisymmetric version
of the scheme the specific character of the CSS method is lost. The VOF/PLIC, CSF, and



VOLUME-OF-FLUID INTERFACE TRACKING 437

CSS methods all require the computation of the normal vector at various places. The nor-
mal vector is readily available at cell corners through expressions (7) and (8), which yield
the stress tensor at cell corners. The stress tensor at cell centers is then obtained by aver-
aging. As shown in [14], this method yields so-called spurious currents: a non-vanishing
velocity field around static droplets. These currents are common in many numerical meth-
ods with interfaces. Their magnitude may be somewhat decreased by smoothing the color
function, but not indefinitely. The best results are obtained when performing one or two
filtering iterations. More discussions about our smoothing method can be found in [14, 17].
Discussions about other kernels can be found in [23]. There is little theoretical analysis
of these currents and of their origin. Some discussion may be found in Ref. [24], where
Jacqmin argues that spurious currents are due to the non-conservation of energy by the
method.

Since derivatives of rapidly varying functions are estimated by finite differences in the
above discretization, convergence is not self-evident. Clearly, proof of the convergence
of the method must lie in its ability to reproduce known flows in test cases. An example
of the results obtained with the VOF/PLIC method combined with CSS is given in the
case of a capillary wave over a flat interface. For a sinusoidal wave with an initial am-
plitudea0 and a wavenumberk, the non-dimensional amplitudea/a0 is a function of the
non-dimensional timeτ =ω0t with ω2

0= σk3/(ρ1+ρ2) and the non-dimensional viscosity
ε= νk2/ω0. We simulate capillary waves between two viscous fluids of equal densityρ

and viscosityµ. We initialize a sinusoidal perturbation whose wavelength is equal to the
box width and let it oscillate. Free-slip conditions are imposed on top and bottom bound-
aries, and periodic conditions on the vertical boundaries. The relevant parameters for the
test case are viscosityε= 6.472× 10−2, frequencyω0= 6.778, and Ohnesorge number
Oh= 1/

√
3000.

We have compared the time evolution of the capillary wave amplitude with the initial-
value theory of [25, 26]. The error is a function of the grid sizeh and of the initial wave
amplitudea0. We have studied how varying the grid sizeh and the ratioh/a0 influences
the convergence toward the analytical solution. Whenh/a0 is much larger than 1, the wave
amplitude is no longer resolved by the grid and the numerical results diverge. For sufficiently
smallh, typically from 1282 to 5122, there may be convergence but at a sublinear rate. A

TABLE 2

Relative Error between the Analytical Solution and the Simulations Function

of the Grid Size and of the Ratioh/a0

1/h

h/a0 32 64 128 256 512

0.1953125 — — — — 0.0198
0.39065 — — 0.0162 0.0145 0.0118
0.78125 0.0609 0.0062 0.0143 0.0096 0.0064
1.5625 0.0564 0.0066 0.0127 0.0096 0.0061
3.125 0.0544 0.0087 0.0145 0.010 0.0063
6.25 0.0540 0.0101 0.0166 — —

12.5 0.0539 — — — —

Note.The density ratio isρ1/ρ2= 1. The error is the root mean square of the differences
between the numerical and analytical solutions, divided bya0.
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FIG. 6. Evoluation of the absolute value of the amplitude of the wave versus non-dimensional timeτ =ω0t ,
comparing the analytical solution and the numerical simulation for a box size 64× 64. The density ratio is
ρ1/ρ2= 1.

similar slow convergence was observed in [22]. The time evolution of the amplitude of
the capillary wave for a given numerical box of size 642 and for a ratioh/a0= 1.5625 is
shown in Fig. 6. The time evolution of the relative error between the computations and the
initial-value theory for different grid sizes and for a fixed ratioh/a0= 1.5625 is shown in
Fig. 7.

We also performed the same calculations for a different density ratio ofρ1/ρ2= 10, for
a fixed ratioh/a0= 1.5625 and different grid sizes. The results are summarized in Table 3.

TABLE 3

Relative Error between the Analytical

Solution and the Simulations for Different

Grid Sizes withρ1/ρ2 = 10 andh/a0 = 1.5625

1/h Error/initial value

32 0.0735
64 0.0139

128 0.0162
256 0.0129
512 0.0081

Note. The error is the root mean square of the dif-
ferences between the numerical and analytical solu-
tions, divided bya0.
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FIG. 7. Evolution of the error between the analytical solution and the numerical simulation(atheory−asimulation)/

a0 versus non-dimensional timeτ =ω0t for a fixed ratioh/a0= 1.5625. Both fluids have the same densityρ1= ρ2.

For this case, the evolution in time of the relative error for different grid sizes is shown in
Fig. 8.

3.2.5. Finding the pressure.The solution of Poisson problem (34) is made more difficult
by the fact that the coefficients (1

ρ
) undergo a jump across the interface. The problem

is inverted using a multigrid algorithm with a V-cycle structure on several grid levels
Ä1, Ä2, . . . , ÄN . All unknowns are defined at the cells centers at each grid level; see Fig. 9.
The coarse grid operator is computed using the Galerkin coarse grid approximation [27–29].

FIG. 8. Evolution of the error between the analytical solution and the numerical simulation(atheory−asimulation)/

a0 versus non-dimensional timeτ =ω0t for a fixed ratioh/a0= 1.5625. The density ratio isρ1/ρ2= 10.
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FIG. 9. Two levels of grid refinement for a 2D mesh. Only one corner of the entire computational domainÄ is
represented, the boundary of the domain is∂Ä. In 3D, cells are replaced by cubes. (—) Fine grid, cell boundaries;
(—) coarse grid, cell boundaries;(•) Fine grid, cell centers; (u) coarse grid, cell centers.

If Ah is the discretization of the elliptic operator on the fine grid andfh the discretization
of the right-hand side of Eq. (34), then the approximation of the coarse grid operatorA2h

is calculated as

A2hu2h = f2h, (41)

with A2h=RAhPand f2h=R fh. Here,R is the restriction operator andP is the prolongation
operator. We use a low-order restriction operator, and a prolongation operator which are
both independent of the grid level and can be easily generalized to 3D. We did not obtain
significantly better results when using higher order operators.

At time tn+1 we use the previous solutionp(n) as an initial condition on the fine grid.
We have chosen the red–black Gauss–Seidel relaxation after having tried other smoothers,
such as ILU decomposition, without obtaining much better convergence rates. Moreover,
the red–black Gauss–Seidel method has the advantage of being easy to vectorize. The
multigrid method stops when a convergence criterion on the residual or error is reached.
If this is not the case, one more V-cycle is made. For any density ratio up to 10,000, the
divergence field and residual are divided by a factor 104 or 105 with 4 or 5 V-cycles. But
with large density ratios the number of cycles increases in certain circumstances (for in-
stance, when the interface becomes very convoluted) and 10 to 30 cycles may be needed
to invert Eq. (34). A better strategy in this special case is to increase the number of relax-
ations in order to obtain fast damping of the most oscillatory modes. We have considerably
reduced the number of cycles (and the computational work) with this strategy when there
are very small structures with high density ratios in the domain. An even better conver-
gence rate could be obtained using multigrid as a preconditioner to a conjugate gradient
method.

3.3. Vectorization and Parallelization of the Model

The code has been implemented on the CRAY C90 of the “Institut du D´eveloppement
et des Ressources en Informatique Scientifique” (IDRIS), Orsay, France, with an initial
performance of 145 Mflops on a cubic domain with 1283 grid points. In addition to stan-
dard vector optimization, we have found that particular care has to be given to the VOF/
PLIC routines, since the functions calculating the parameterα and the fluxes across
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adjacent cells are not prone to be vectorized. In particular, we have to simulate “by hand”
the CRAY directives DENSE and SPARSE. First, a loop runs on all indices and calculates
the fluxes for the cells completely full or empty. The number of these points isO(N3),
whereN is the number of grid points in each direction for this cubic case. This emulates
the CRAY directive DENSE. Then, a second loop calculates the number of cells crossed
by the interface, which isO(N2), records their indices, and then loops over them, perform-
ing the necessary calculations. This loop is equivalent to the CRAY directive SPARSE. It is
possible that an iterative method for the solution of the cubic relation (13) is more suitable
for vectorization and we will investigate this in the next version of the model. With all this
“artistic” tuning, the whole model runs presently at an average rate of 360 Mflops out of a
peak performance of about 1000 Mflops.

The model has been also parallelized with standard compilation options on the CRAY
C90 with four processors, over the same computational domain. A speedup of 3.2 is obtained
for this case, while the theoretical limiting value given by Amdahl’s law is 3.6.

4. RESULTS

4.1. Sedimentation of a Droplet Array

Our first test compares the results of a calculation using our scheme with a partially
analytical result obtained by Sangani [30] for the speed of sedimentation of a cubic array of
fluid particles. The theoretical calculation is for the creeping-flow limit, with undeformed,
spherical fluid particles. This test is interesting since the periodic arrangement of the par-
ticles in the sedimenting array corresponds to the periodic boundary conditions used in
the calculations. Moreover, in the creeping-flow limit the effects of inertia are eliminated.
Surface tension is used only to keep the particles spherical, and thus the validation test
concentrates on the treatment of viscous effects by our method.

4.1.1. Problem definition.We study the sedimentation of an infinite periodic array of
drops falling in another fluid in the Stokes flow limit with a vanishing capillary number
Ca=µ1U/σ , with U being the sedimentation velocity. (From now on the index 1 will cor-
respond to the drops—the dispersed phase—and 2 to the outer fluid.) Because Ca and Re are
small, the drops always keep their spherical shape. We compute numerically the sedimenta-
tion velocity of this infinite suspension of drops for different volume fractions and viscosity
ratios of the inner to the outer fluid. A single drop of volumeV1 is initialized in a unit cubic
domainÄ of volumeV1+V2. We use periodic boundary conditions on both top and bottom
boundaries of the domain atz= 0, l and mirror conditions on each vertical boundary at
x= 0, l andy= 0, l . The configuration initialized with these boundary conditions is a cubic
lattice of falling drops.

4.1.2. Pressure term and sedimentation velocity.A subtle technical point of periodic-
box simulations of sedimenting particles is that the total momentum added to the system
should be zero in order to avoid a secular acceleration of the entire flow. This is achieved by
decomposing the pressure gradient into a constant and a zero-averaged part. The constant
partA=−〈∇ p〉 of the pressure gradient balances the average drag on the particles and the
hydrostatic pressure. We also neglect the acceleration terms in the Navier–Stokes equation
as appropriate for creeping flow. The Navier–Stokes equation (1) then becomes

0= −∇ p̃+∇ · (2µD)+ ρg+ A, (42)
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where p̃= p+ A · x. Integrating (42) over the periodic domain we obtain

0=
∫
Ä

ρgdv +
∫
Ä

A dv. (43)

Thus

A = −ρ1V1+ ρ2V2

V1+ V2
g. (44)

Another tricky part is the definition of the sedimentation velocityU . To correctly define it
we should envision a finite size bed of particles sedimenting in a fluid which is at rest far
from the bed. The addition of theA term forces the numerical frame to be the center-of-mass
reference frame. But the relevant frame of reference for the definition ofU is the frame in
which the fluid far away is at rest. The velocity so defined may be related to the velocity
U ′ of the drops measured (in this case numerically) in the center-of-mass reference frame.
Using mass conservation and relation (44) it may be shown that for equal-density fluids
U ′ =U [31].

4.1.3. Comparison of numerical results with theory.We recall the classical Hadamard–
Rybczynski expression for the velocityUs of a single drop falling in an infinite fluid
environment

Us = 2(ρ1− ρ2)a2

3µ2

1+ K

2+ 3K
g, (45)

whereK =µ1/µ2. Based on the works of Hashimoto [32] and Zuzovskyet al. [33], Sangani
[30] found solutions of the Stokes equations in this particular geometry. The ratio of the
sedimentation velocity of the array of dropsU and Hadamard–Rybczynski velocity for
a single dropUs only depends onK and on the global volume fraction of the parti-
cles c=V1/(V1+V2). The expression forUs/U is a power expansion for smallc and
was found numerically by Sangani [30] for arbitraryc, below the close-packing value
c=π/6.

Numerical simulations yield an evolution of the settling velocity as a function of time. The
vertical component is observed to tend asymptotically to a stationary valueU . We verified
that the other components of the velocity are negligible so that the drops fall vertically.
Table 4 shows a comparison of the results of a 323 simulation with the theoretical values.
For K = 0.2, 1 and 2 and forc≤ 0.25 the average normalized error between theoretical
and numerical results is less than 1%, and forc= 0.35 the error is around 5%. The error
increases with increasing volume fraction, but remains small for moderate viscosity ratios.
For a greater viscosity ratioK = 10, the error is 12.4%. High or low viscosity ratios lead
to errors which may be explained by the estimation of viscosity in mixed cells through
Eq. (30). The results are summarized in Fig. 10.

Convergence of the method for decreasing mesh size was tested as follows. We investi-
gated a fewc values for the most unfavorable caseK = 10. The results appear in Table 5.
The average error between the results for a 163 box and the theory is 24.8%; for a 323 box
it is 14.3%, and for a 643 box it is 6.6%. It may be noticed that every time one divides the
grid sizeh by two, the error is approximately divided by two. This corresponds to an error
of O(h).
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TABLE 4

Comparison between Sangani’s Predictions and Numerical Calculations for Different

Density Ratios and Volume Fractions of the Particles

K c NumericalUs/U TheoreticalUs/U Rea Cab Normalized error (%)

0.2 0.1131 2.37 2.47 0.036 0.06 4.0
— 0.1796 3.05 3.27 0.056 0.03 6.7
1 0.05 2.11 2.10 0.055 0.059 <1
— 0.1131 2.90 2.88 0.011 0.073 <1
— 0.1796 3.86 3.95 0.013 0.075 2.3
— 0.25 5.27 5.31 0.112 0.071 <1
— 0.35 8.36 8.07 0.013 0.061 3.6
2 0.1131 3.2 3.17 0.018 0.061 <1
— 0.1796 4.45 4.49 0.021 0.061 <1
— 0.25 6.10 6.15 0.021 0.055 <1
— 0.35 9.0 9.5 0.02 0.047 5.2
10 0.1131 4.16 3.7 0.065 0.044 12.4
— 0.1796 6.25 5.52 0.069 0.039 13.3
— 0.25 9.15 8.07 0.066 0.034 13.5
— 0.35 15.25 13.15 0.002 0.025 16.0

a Reynolds number calculated in the drop.
b Capillary number calculated in the outer fluid.

FIG. 10. Ratio of the sedimentation velocity of an infinite array of drops and the Hadamard–Rybczynski
velocity of a single drop.
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TABLE 5

Effect of the Numerical Grid Size on the Comparison with the Theoretical Predictions

in the Most Unfavorable CaseK = 10

c Us/U 163 Us/U 323 Us/U 643 Us/U theory

0.1796 6.97 (+26%)a 6.255 (+13.3%) 5.86 (+6.2%) 5.52
0.25 10.36 (+28.5%) 9.155 (+13.5%) 8.55 (+6%) 8.07
0.35 15.76 (+19.8%) 15.25 (+16%) 14.13 (+7.5%) 13.15

a The value between parentheses is the normalized error, forK = 10, between numericalUs/U and theoretical
Us/U .

4.2. Simulation of Pinching Pendant Drops

A recent review of reconnection problems in two-phase flows may be found in [34].
Pendant drop simulations have recently been reported by several authors. Reference [35]
deals with the detachment of a bubble from a needle. Schulkes [36] neglects viscous effects
and solves for potential flows with a boundary integral method. Eggers and Dupont [37]
derived from the Navier–Stokes equations a one-dimensional equation in the axial direction
z and solved it numerically. Both [36] and [37] find good agreement with the experiment
of Peregrine in the case of water [38]. But they disagree on the importance of viscous ef-
fects in the pinching region during the final stages of pinching in the case of low-viscosity
fluids.

The relevant parameters include gravity, surface tension, and viscous effects. We define
a Bond number Bo= ρ1gr2

0/σ , wherer0 is the radius of the orifice. The Bond number
represents the ratio of gravity to capillary forces. We shall also use the Ohnesorge number
Oh=µ1/(ρ1σ r0)

1/2, and a Weber number based on the influx velocityV at the nozzle
We= ρ1V2r0/σ . The Ohnesorge number compares viscous and capillary forces for a given
radius, while the Weber number compares inertia and capillarity.

As in [36], we compute a dimensionless axial velocity profile linear inr at the end of the
nozzle located at the top boundary of our numerical box,u/V = (1− r/r0) for r < r0 and
u= 0 for r > r0. In order to conserve the total volume we impose the same velocity profile
at the bottom boundary of our box. Thus, the same volume of fluid is going in and out of
the box. We locate one-quarter of the nozzle in one corner of the top boundary and impose
mirror symmetries on each vertical boundary. On the top boundary we have

u/V = (1− r/r0) and C = 1 for r < r0,
(46)

u = 0 and ∂nC = 0 for r > r0.

On the bottom boundary we impose

u/V = (1− r/r0) and ∂nC = 0 for r < r0,
(47)

u = 0 and ∂nC = 0 for r > r0.

In order to compare our simulations to the photographs of [38], we take almost the same
parameters as in [37], based on the physical properties of water (see Table 6). In order to
minimize spurious currents in the outer fluid, the density of the outer fluid is taken to be six
times larger than the density of air. Spurious currents threaten stability when large density
ratios are combined with small Ohnesorge numbers. We report a simulation with 642× 128
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TABLE 6

Dimensionless Parameters for All

Pendant Drop Simulations

Bo= ρ1gr2
0/σ 1

We= ρ1V2r0/σ 9.216 10−5

Oh=µ/(ρ1σ r0)
1/2 0.0023

ρ1/ρ2 133

Note. ρ2 is the outside fluid (air) density.

grid points. Owing to the fourfold symmetry this would correspond to a 1283 simulation.
Notice that We¿Bo= 1 so that the timescaler0/V is very large compared to the free-fall
and capillary timescales. This means that since the velocities at the nozzle are small, the
droplet grows slowly and its time evolution may be approximated by a continuous sequence
of quasi-equilibrium shapes. As seen in Fig. 11, when the volume of the drop reaches a
critical value at which surface tension forces cannot hold the droplet steady against gravity,
evolution becomes much faster and part of the drop falls. Similar to the case of pinching
due to the Rayleigh instability, breakup is strongly asymmetric. During the last stage before
separation a long cone-shaped neck is formed which breaks in two places, close to the drop
and to the nozzle end, at almost the same time. When the neck has its second reconnection a
detached liquid filament is formed which relaxes to a secondary droplet. Just after the main
droplet has detached from the liquid bridge, its top surface becomes almost flat. Subsequent
oscillations are observed during the fall of the droplet [39].

At all stages before and after the pinching process, good agreement is found between
simulations and the photographs of [38]. The three-dimensional code slightly overestimates
the volume of the main drop; see Fig. 12. Due to the lack of data for the inlet flux in [38],
we tried several fluxes at the orifice which are smaller than but comparable to the flux
we have taken here. We obtain volumes for the main drop which agree better with [38]
but smaller volumes for the upper part of the neck connected to the nozzle. We have also
done axisymmetric/two-dimensional simulations in a 64× 128 domain and found very good
agreement; see Fig. 13. The axisymmetric code gives more accurate results with the grid size
we have taken here. With this grid size, simulations do not enable us to see accurately the
capillary waves occurring on the detached liquid filament during its recoil after the second
bifurcation (refer to the experimental pictures in [40]). It may be noticed that the length of
these waves is not much larger than the grid size. With both the fully three-dimensional and
the axisymmetric calculations we sometimes notice a curvature inversion at the top of the
drop just after the first bifurcation. This could be caused by the strong recoil of the neck;
however, this numerical observation should be taken with caution because of the small scale
of the phenomenon.

4.3. Simulation of Bubbles Rising in a Viscous Liquid

We simulate gas bubbles rising under gravity in a viscous liquid using our axisymmetric/
two-dimensional code. This test at moderate Reynolds and capillary numbers involves
strong particle deformation, while in the sedimenting droplet array test of Section 4.1 the
droplets are spherical. We compare our numerical results with the experimental results of
Hnat and Buckmaster [41, 42]. Sussman and Smereka [43] compared simulations using a
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FIG. 11. Three-dimensional simulations of a pendant drop.

level-set method with the same experimental work and obtained good agreement for the
bubble shapes and final velocities. Ryskin and Leal [44] computed the steady motion of the
bubbles and found excellent agreement with these same experimental results.

We use the same physical parameters as in [43]: the liquid and gas densities areρl =
0.8755 g cm−3 andρg= 0.001 g cm−3; the dynamical viscosities areµl = 1.18P andµg=
0.01P; the surface tension coefficient isσ = 32.2 dyn cm−1 and gravity isg= 980 cm s−2.
First we simulate a bubble with equivalent radiusr = 0.61 cm, corresponding to bubble A
in Fig. 1 and Table I of [41]. The grid size is 128× 512, the box radius isR= 3r , and the
box height isH = 12r . Figure 14 shows the time evolution of the rise speed. The steady
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FIG. 12. Superposition of experimental photographs [38] and of three-dimensional simulations (black lines):
(left) at the first bifurcation; (right) just after the second bifurcation. Notice the flattening of the main drop and the
creation of a secondary droplet. Reprinted with the permission of Cambridge University Press.

speed of 21.5 cm s−1 that we observe is the same as the experimentally measured value.
The bubble shape and wake structure that we have computed are in good agreement with
the experimental photograph shown in Fig. 1A of [42]; see Fig. 15.

We then simulate bubbles with radiusr = 0.83 cm andr = 1.08 cm corresponding, re-
spectively, to bubble B and bubble C of [41]. The grid dimensions are unchanged but the
box radius is nowR= 5.5r and the box height isH = 22.2r for both simulations. In order
to reduce the influence of the walls, we have taken larger values ofR/r andH/r than in
the bubble A simulation. The final rise speed measured in the experiments is 27 cm s−1

for bubble B while our simultation give a 25.8 cm s−1 speed (4.45% error). For bubble C,
the experimental rise speed is 30.5 cm s−1 and we find 28.6 cm s−1 (6.23% error). This
discrepancy may be due to the presence of the walls which are closer to the bubble in the
simulations than in the experiments.
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FIG. 13. Same as Fig. 12 but for two-dimensional axisymmetric calculations. Reprinted from [38] with the
permission of Cambridge University Press.

5. DISCUSSION AND CONCLUSION

We have introduced a new numerical method for interface tracking using the VOF/PLIC
approach. Because of theseveral different ways in which a cube may be cut by a plane,
our method appears more complex than the two-dimensional version presented in [19]. On
the other hand, we have simplified the calculation of the normal by using a simple finite
difference approach.

Our results provide a number of partial assessments of the viability of the suggested
scheme for interfacial flow simulations. The method is stable in an appreciable range of
parameters, although it appears difficult to treat large density ratios and large surface tensions
(as measured by the Ohnesorge number) simultaneously.

Since many authors have already presented the VOF/PLIC interface tracking, this part
of the method is not new except perhaps in some implementation details. The originality of
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FIG. 14. Time evolution of the bubble rise speed for parameters corresponding to bubble A of [41]. The
agreement between the computed and the experimental steady speed is excellent.

our approach lies rather in the combination of this method with several others in order to
produce a numerical solution of the full set of equations.

We have presented some validations of a three-dimensional VOF/PLIC algorithm. Com-
parisons with the theory are now much more self-consistent than in many other works,
including ours [14], since we use the correct finite Reynolds number theory for the initial
value problem instead of, for instance, the approximate inviscid normal mode theory. Fur-
ther, we do observe convergence. The error on the finest grids is around 1% but is larger
than the one with more sophisticated surface tension methods such as the marker method
of [22].

We also obtain good results for comparison with theoretical work on the sedimentation
velocity of an array of droplets at small Re and Ca. The discrepancy between numerical
and theoretical results is caused by the discretization of the viscosity jump: we use the cell-
averaged viscosity (38) in mixed cells. As can be seen easily in the simple case of a parallel
flow, this does not lead to an exact expression even in the simple case of a sharp planar
interfaces crossing a cell parallel to a grid direction. Therefore we do not describe stress
jumps withO(h2) accuracy. However, the error is apparentlyO(h) and remains small.

To further discuss the results of this test, we feel that the values very near close packing
(c= 0.35) should be excluded as rather atypical. Then the largest error for a 323 grid is
13.5%. In that case, there are at least 15 grid points in the droplet.

This problem associated with inaccurate description of the viscosity jump in VOF
methods was recognized in [45]. Animprovement to viscosity-interpolation methods was
proposed in that reference for the particular case were the interface is approximately parallel
to one of the grid axes. Some authors have reported that harmonic means of viscosities give
in some cases better results than arithmetic means.
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FIG. 15. Comparison of the computed bubble shape, the streamlines inside the bubble, and those in the bubble
wake (left) and Fig. 1A of [42] (right).

The typical resulting error (between 1 and a few percent) in the sedimentation and
capillary wave examples may be considered small but is obtained at the cost of relatively
fine grids. In other words, it is fair to say that the method reproduces quantitatively the
correct physics but that it is expensive to increase the accuracy significantly.

While it is likely that the error could be reduced by using different methods for the
computation of the stress jump conditions, preliminary two-dimensional attempts [22] show
that this requires a much more detailed analysis to approximate the jumps on the interfaces.
The relative simplicity afforded by fixed-grid methods then diminishes as the various ways
in which the interface crosses the control volumes need to be accurately taken into account.

One of the challenging aspects of interface tracking on fixed grids is that it is often
necessary to smooth the functions that present jumps. For instance, it may be necessary
to smoothρ and to use a filteredC in the calculation of surface tension. This smoothing
thickens the interface and may produce errors of magnitude comparable to or higher than
what was found in the sedimentation and capillary wave examples.
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In a general way it appears that the thickness of the interface is a subtle issue: it may
be necessary to weight the advantages of a sharper, more accurate interface against the
complexity and instability that a sharp interface entails.

Validation tests on bifurcations of pendant drops are of a rather different nature: here the
comparison is with experimental results (although the experiments and several theoretical
models yield very similar shapes), and it checks surface tension effects in a mostly static
system, except near reconnection when there is rapid motion of the interface. The results
show much better agreement than for the above. More importantly they demonstrate the
ability of the scheme to pass through the singularity at the instant of the bifurcation, while
remaining faithful to the experiment. Comparisons between the three-dimensional or the
axisymmetric version of the scheme and experimental pictures for water at both bifurcations
show very good agreement. However, it is clear that if more information is desired about
the structure of the singularity, such as the exponents appearing in the scaling laws for ve-
locity and shape functions [46], selective refinement in the pinching region would be neces-
sary.

The bubble rise test shows that our model is able to reproduce the bubble shape, rise
speed, and wake structure with good precision. Our method is able to accurately simulate
test cases involving strong particle deformations.

APPENDIX

Lagrangian Advection and Volume Fluxes through Cell Boundaries

In this Appendix we discuss in more detail the propagation of the interface and the
evaluation of volume fluxes. A fractional-step approach is used: one step for each spatial
direction. During each step the plane cutting each cell is advected in one direction (here
thex1 direction), using the Lagrangian procedure described in Section 3.1.3. For each cell,
three contributions are calculated: the volume fluxesφ− andφ+ enteringthe(i, j, k) cell,
respectively, from the(i − 1, j, k) cell and from the(i + 1, j, k) cell and the volumeφ0

of the fluid contained at the beginning of the step in the control cell and which remains
there. If the fluid is going out of the cell through the right boundary then(φ+)i, j,k= 0 and
(φ−)i+1, j,k> 0; if it goes through the left boundary then(φ−)i, j,k= 0 and(φ+)i−1, j,k> 0.
The three volumes are the regions under the advected planar interfaces which cut the
(i, j, k) cell; see Fig. 16. The volumes(φ−)i, j,k, (φ0)i, j,k, and(φ+)i, j,k are calculated using
the functionC(m′, α′,V ′) of formula (13), wherem′, α′, andV ′ are the relevant parameters
of the advected interface; for example,V ′ in the calculation ofφ− is the volume of the
parallelepipedABCDshown in Fig. 16. The updated volume fraction in each cell after the
fractional step along thex1 direction is then given by

C(∗,x1)
i, j,k

[
(φ−)i, j,k + (φ0)i, j,k + (φ+)i, j,k

]
. (48)

Then, the overall fractional-step procedure requires three reconstructions of the interface
and an advection step along each one of the three coordinate directions.

The three fluxesφ−, φ0, andφ+ calculated with the geometrical approach correspond
to the volume fluxes across the boundaries of the(i, j, k) cell during the advection step.
Moreover, the Lagrangian advection method allows us to take into account the stretching
or compression of the interface during each single fractional step.
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FIG. 16. Geometrical calculation of the volume fluxes during one fractional step in 2D. Since we use a linear
interpolation of the velocity field in each direction, in 3D each plane remains a plane. Here, in the(i, j, k) cell the
velocity field during the fractional step corresponds to a compression. Since the 3D velocity field is divergence
free, the compression is compensated by a stretching along at least one of the other two directions. The volume
fluxesφ−, φ0, andφ+ are the volumes under the advected planes cutting the(i, j, k) cell. In other configurations,
φ− orφ+ can be equal to zero. (—) Segment after advection; (– – –) segment before advection; (—) cell boundaries;
(- - -) “advected cell boundaries.”

Let χ(x, t) be the characteristic function with value 1 in phase 1 and 0 in phase 2. The
characteristic functionχ follows the conservation law of a passive scalar

∂tχ + u · ∇χ = 0, (49)

which can be rewritten as

∂tχ = −∇ · (uχ)+ χ∇ · u. (50)

The divergence∇ ·u is the sum of three terms (∇ ·u= ∂xu+ ∂yv+ ∂zw), one from each
coordinate direction. The fluid can be compressed or stretched during one fractional ad-
vection step, but the flow remains incompressible in the whole procedure (∇ ·u= 0 while
each term∂xi ui is not necessarily zero). We integrate (50) on the spatial domainÄi, j,k and
in time∫ τ

0

∫
Äi, j,k

∂tχ dt dV = −
∫ τ

0

∫
∂Äi, j,k

(uχ) · n dt dS+
∫ τ

0

∫
Äi, j,k

χ∇ · u dt dV, (51)

where∂Äi, j,k is the boundary of the cell. In the fractional step approach, Eq. (51) is actually
written as ∫

Äi, j,k

[(
χ(3) − χ(2))+ (χ(2) − χ(1))+ (χ(1) − χ(0))] dV

=
3∑

l=1

[
−
∫ τ

0

∫
∂Äl

χ(l−1)u · dSl dt +
∫ τ

0

∫
Äi, j,k

χ(l−1)∂xl ul dV dt

]
, (52)

where∂Äl are the two faces of the(i, j, k) cell which are orthogonal to thexl -direction,χ(l )

denotes the value ofχ at the end of thel th fractional step, and we have setχ(3)=χ(x, t (n+1))
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andχ(0)=χ(x, t (n)). Also, the sum is intended as an ordered series; i.e., stepl follows step
l − 1.

During the advection in thexl direction, we need to evaluate the quantity∫
Äi, j,k

(
χ(l+1) − χ(l )) dV = −

∫ τ

0

∫
∂Äl

χ(l )ul dSl dt +
∫ τ

0

∫
Äi, j,k

χ(l )∂xl ul dV dt. (53)

The last equation can be written

h3
(
C(l+1)

i, j,k − C(l )
i, j,k

) = −∫ τ

0

∫
∂Äl

χ(l )ul dSl dt +
∫ τ

0

∫
Äi, j,k

χ(l )∂xl ul dV dt, (54)

where

Ci, j,k = 1

h3

∫
Äi, j,k

χ dV

is the volume fraction of fluid 1 in the(i, j, k) cell andh the side of the cube. Let us consider,
without loss of generality, thex1 direction step. The volume in the(i, j, k) cell after the
advection is

C(1)
i, j,k = C(n)

i, j,k −
1

h

∫ τ

0
F(xi+1/2, t)ui+1/2(t) dt + 1

h

∫ τ

0
F(xi−1/2, t)ui−1/2(t) dt

+ 1

h

∫ τ

0

∫ h

0
F(x, t)∂xu dx dt, (55)

with

F(x, t) = 1

h2

∫ h

0

∫ h

0
χ(n)(x, y, z, t) dy dz

the intersection between the vertical plane atx and the domain of the “cut cube” at timet (n)

(i.e., the fraction of fluid 1 wetting the vertical plane atx at timet (n).)
In order to connect the geometrical approach to the volume fluxes, it is necessary to find

a relation between the Lagrangian velocity of the interface and the velocity defined on the
faces of the cells. Consider the term

F− = 1

h

∫ τ

0
F(xi−1/2, t)ui−1/2(t) dt, (56)

which represents the volume of fluid 1 entering the(i, j, k) cell from the left. Thex1 velocity
of a point on the planar interface at a given coordinatex is equal to

u
(
x, t (n)

) = un
i−3/2

(
1− x

h

)
+ un

i−1/2
x

h
. (57)

The Lagrangian velocity of each point is constant during the fractional step and it is advected
with the point. The vertical plane which was originally atx at time t (n) with a velocity
u(x, t (n)) still has the same velocity when it reaches the coordinatex= xi−1/2 at time
t ∈ [t (n), t (n+1)]; therefore

ui−1/2(s) = u
(
xi−1/2− ui−1/2(s)s, t

(n)
)
, (58)
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wheres= t − t (n) ∈ [0, τ ]. Using (57) and (58), an expression forui−1/2(s) is readily found:

ui−1/2(s) =
un

i−1/2h

h+ (un
i−1/2− un

i−3/2

)
s
. (59)

Our approximation to the exact fluxF− is

φ− = 1

2
(F(xi−1/2, τ )+ F(xi−1/2, 0))

un
i−1/2τ

h
. (60)

We obtain this expression from Eq. (56) by keepingun
i−1/2 constant and using a simple

trapezoidal rule for the integration of the termF(xi−1/2, t). By considering expression (59)
and expanding it ins, we see that(F− −φ−)/φ− =O(τ ).

The calculation ofφ+ is quite similar to the calculation ofφ−, while in the compressional
term

F0 = C(n)
i, j,k +

1

h

∫ τ

0

∫ h

0
F(x, t)∂xu dx dt

we have

∂xu(s) = un
i+1/2− un

i−1/2

h+ (un
i+1/2− un

i−1/2

)
s
. (61)

Let φ0 be the geometrical volume for thex1 direction step as previously defined. From
expression (61) and the approximation thatF(x′, s) is linear inx′, we find that

F0 = C(n)
i, j,k +

1

h

∫ τ

0

1

2

(
F
(
h+ un

i+1/2s, s
)+ F

(
un

i−1/2s, s
))(

un
i+1/2− un

i−1/2

)
ds. (62)

Clearly, F(h+ un
i+1/2s, s)= F(h+ un

i+1/2τ, τ )= F(h, 0) and F(un
i−1/2s, s)= F(un

i−1/2τ,

τ )= F(0, 0), so that the final expression forF0 is

F0 = τ

2h

(
F
(
un

i−1/2τ, τ
)+ F

(
h+ un

i+1/2τ, τ
))(

un
i+1/2− un

i−1/2

) = φ0. (63)

Thusφ0 is an exact expression forF0.
In conclusion, we have shown that the relative error between the geometrical fluxes and

the exact ones inO(τ ), so that the geometrical method is first order in time.
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